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Merging Quantum Annealing Computation and
Particle Statistics: A Prospect in the Search of
Efficient Solutions to Intractable Problems
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In principle, a quantum Boolean network can be obtained by implementing gates
as local relaxation processes (a quantum transposition of simulated annealing),
while the correlations between Boolean variables imposed by gate wiring could
be provided by particle statistics. It is argued that such a wiring should not affect
the relaxation time of individual gates.

Testing different computation paradigms while searching for the best
match with quantum specialties seems a natural thing to do. Quantum anneal-

ing computation AÐ the quantum transposition of classical ª simulated anneal-

ingº Ð is one alternative to the most common approach of quantum sequential

computation S, namely the quantum transposition of the sequential Turing

machine (Deutsch, 1985; Ekert and Jozsa, 1996). Let us compare A and S.
S relies on performing a sequence of reversible transformations onto a digital
quantum register which can dwell in a coherent superposition of computa-

tional states (Fig. 1a, ignore dotted lines). To improve on classical efficiency,

these states need to interfere with each other through some transformation.

S has produced outstanding results, like factoring in polynomial time (Shor,

1994). However, the following difficulties still exist: (i) there is no ª mechani-
cal wayº of applying S to improve on classical computationÐ finding new

ways requires much ingenuity and is proving difficult; (ii) S is suspected to

be unable to solve NP-complete problems in polynomial time (Bennet et al.
1994); (iii) S is severely hampered by decoherence (Harroche and Rai-

mond, 1996).
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Fig. 1.

We argue that ª difficultiesº (i) and (ii) might derive from the sequential
character of the physical computation process (Feynman, 1986: ª sequentiality

is a logical, not a physical requirementº ). The time diagram of Fig. 1a shows

a Boolean network of N nodes, or qubits, labeled a to zÐ although the

register is three qubits. This network is satisfiable by any input, owing to its

constrained topology. Connecting a to z (dotted line) is logically legitimate

and makes the state of z participate in logically determining itself through a

loop of logical implications. Consequences are: (1) testing network satisfiabil-

ity is now an NP-complete problem, and (2) the physical process should

undergo a closed timelike line (an implication loop becomes a causal loop).

Thus, a possible problem with S is its inability to map a network of uncon-

strained topology.

It is not so with A. We shall review classical annealing first (Fig. 1a,

ignore dashed lines). Now all nodes a to z exist at the same time. They can

be seen as glasses containing a coin which can either be in the head (0) or

tail (1) state. Computation is: (1) Do coin states satisfy all local gate and

wire relations? (2) If yes, stop: a solution has been found. (3) If not, shake

(flip coins) and go to (1). If this process does not stop, after n loops one can

decide with any confidence level desired (increasing with n) that the network

is not satisfiable. Wire a±z does not bar this kind of computation.

To speed up computation, each gate or wire (network elementÐ N.E.)

is submitted to a local energy function. The energies of the local coin configu-

rations which satisfy the N.E. are the same and correspond to a degenerate

ground state. The energies of the others are discretely above ground. ª Shak-

ingº is now associated with a gradient driving the process to the ground state.

But there can be frustration between different network parts which have

separately reached ground. The overall energy has many local minima, of

the order of 2N.

In quantum transposition, each node r becomes a qubit of eigenstates

| x & r , with x 5 0, 1. We will refer to Fig. 1b, where (1) all wires incorporate

a NOT function (denoted by X) and will be called links, (2) logically irrevers-

ible gates can be used (inputs and outputs coexist), (3) ID stands for identity
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gate, (4) nodes are a set of interlinked pairs. This closed network is universal

and can wire up any Boolean constant, thus preimposed inputs or outputs.

The Hamiltonian of an individual AND gate, operating on qubits r, h,
v, has eight eigenstates, all the combinations of qubit eigenstates. Eigenstates

| 0 & r | 0 & h | 0 & u , . . ., | 1 & r | 1 & h | 1 & v , which satisfy the gate, belong to a fourfold

degenerate ground state. Conversely, | 0 & r | 0 & h | 1 & v , . . ., | 1 & r| 1 & h | 0 & v stand on a

discretely higher (say by D E ) energy level. The ID gate is dealt with similarly.

Hamiltonians of such gates are given in Castagnoli and Rasetti (1993). By

considering a gate alone, annealing means bringing it to relax onto ground
by lowering the temperature of the heat bath. Even at fixed temperature T
such that 0 , kT , , D E, the probability p of finding the gate relaxed by

time t will increase with time following (asymptotically) the law p 5 1 2
e 2 r t, where r . 0 (incidentally, even without a heat bath, tunneling would

bring the state to ground).

Correlations between Boolean variables established by links will rely
on particle statistics. To this purpose, the qubit representation will be viewed

as the outcome of a ª finerº representation. Label l and eigenvalue x of qubit

| x & l will become two binary compatible attributes of a fermion particle, x
ranging over 0, 1 and l ranging over the node labels of a link. Attribute

compatibility will play an essential role: in principle, one should be able to
alter the state of one attribute without affecting the state of the other. By

way of exemplification, x can be interpreted as the spin of a spin-1/2 particle

with respect to some axis (the same for all qubits), l the label of the spatial
state occupied by the particle, namely a site of some lattice LÐ network

nodes will be viewed as the sites of L. Here space and spin are the compatible

attributes, but there might be other interpretations.
Each site should contain one fermion exactly. To create L, an independent

Hamiltonian Hrs is introduced for each link (r, s) (gate Hamiltonians are

ª turned offº for the time being). Hrs operates on the spatial state of a couple

of identical fermions 1 and 2 through kinetic and Coulomb potential (external

and interaction) operators (1 and 2 have to be charged particles), while it

does not contain spin operators. The discrete Hilbert space of the labels of
the sites of the two particles is span{ | r & 1 | r & 2, | r & 1 | s & 2, | s & 1 | r & 2, | s & 1 | s & 2}, where

| r & 1 reads particle 1 in label r site, etc. For example the eigenvalues-eigen-

states of

Hrs 5 1
3 0 0 0

0 1 2 1 0

0 2 1 1 0

0 0 0 4 2 are

4Ð | s & 1 | s & 2

3Ð | r & 1 | r & 2

2Ð
1

! 2
( | r & 1 | s & 2 2 | s & 1 | r & 2)

0Ð
1

! 2
( | r & 1 | s & 2 1 | s & 1 | r & 2)
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When all links are in their ground states, each link site (network node) hosts

one particle exactly. Moreover, the spatial state vector of the two particles

belonging to each link is symmetrical under their permutation P12. Thus, the
spin state vector of the two particles (factorizable, since Hrs has no spin

operators) is atisymmetrical. The overall link ground state is

| c & 5
1

2
( | 0 & 1 | 1 & 2 2 | 1 & 1 | 0 & 2)( | r & 1 | s & 2 1 | s & 1 | r & 2) (1)

where | 0 & 1 reads spin of particle 1 zero (down), etc.

Thus

| c & 5
1

! 2
( | c 8 & 2 | c 9 & ) 5

1

! 2
( | 0 & r | 1 & s 2 | 1 & r | 0 & s)

where

| c 8 & 5
1

! 2
( | 0 & 1 | r & 1 | 1 & 2 | s & 2 2 | 1 & 1 | s & 1 | 0 & 2 | r & 2) 5 h 8 | 0 & r | 1 & s

| c 9 & 5
1

! 2
( | 1 & 1 | r & 1 | 0 & 2 | s & 2 2 | 0 & 1 | s & 1 | 1 & 2 | r & 2) 5 h 9 | 1 & r | 0 & s

Notice that both terms appearing in | c 8 & ( | c 9 & ) in the particle representation

map onto | 0 & r | 1 & s ( | 1 & r | 0 & s) in the qubit representation. h 8 and h 9 are phase

factors which must be equal for | c & to remain invariant for a rotation of the

spin reference axis.

Let A12 5 1 2 P12 plus normalization be the antisymmetric operator.
Notice that also A12 | c 8 & 5 | c 8 & and A12 | c 9 & 5 | c 9 & . The | c & antisymmetry

(even under permutation of site labels) is ª oversizedº and can be broken to

the normal antisymmetry (under P12) of | c 8 & and | c 9 & . Furthermore,

A12 | x & 1 | r & 1 | x & 2 | s & 2 5 A12 | x & 1 | s & 1 | x & 2 | r & 2 5 0 for x 5 0, 1

This, in the qubit representation, becomes symmetry Ars defined by

Ars | x & r | 1 2 x & s 5 | x & r | 1 2 x & s, Ars | x & r | x & s 5 0, with x 5 0, 1

Thus, having turned link Hamiltonians on and allowed the links to relax onto

ground (independently of each other), the lattice of ª qubitsº L is obtained,

where qubit eigenvalues are submitted to the symmetry (concerning pairs of

qubits connected by a link) AÄ 5 P r,sArs , where r, s range over all pairs of
link labels.

The spin of the particle in a link site can be measured in principle
without disrupting L and AÄ , the result of dynamics on spatial attributes

compatible with spin. | c & is projected onto either | c 8 & or | c 9 & . Since AÄ
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symmetry is kept throughout the measurement, these projections can be

written Ars P8 | c & 5 Ars| c & 8 5 | c & 8, ArsP9 | c & 5 Ars | c & 9 5 | c & 9, where P8 5
| c 8 & ^ c | , etc.

After creating L and AÄ , gate Hamiltonians are ª turned on,º then gates

are allowed to relax, both things operating on the compatible spin attribute

without disrupting L and AÄ . Let Pg be the projector representing relaxation

of gate # g, and | C & 5 ( h a h | C h & the generic network state, where | C h & is a

tensor product of of all qubit eigenstates. At relaxation, | C & satisfies

&
r, s

Ars &
g

Pg | C & 5 | C & (2)

where g runs over all gate labels. Any eigenstate | C h & satisfying equation

(2) satisfies all links and gates, and is thus a network solution (the case

without solutions will be discussed below). Notice that permutations between

fermions belonging to different links would not establish any spin correlation

even if fermions were identical across links, since link Hamiltonians are

independent of each other. Entanglement with a reservoir initially in state

| R & changes each | C h & | R & into | C h & | Rh & , where | Rh & is now correlated with

| C h & , without altering the result of equation (2). A is thus unaffected by

decoherence, as long as link ground states are not offset by external

interaction.

We shall now discuss relaxation time under symmetry AÄ . This appears

to be a basic question raised by the present approach. If AÄ (particle statistics)

were a classical bound, this would likely be exponential in N. Here we

hypothesize that AÄ works on the state originated by the independent gate

relaxation processes like a quantum watchdog, continuously killing at its

originÐ through a series of ª infinitesimalº state vector reductionsÐ any path

that would lead to violating AÄ itself. AÄ would work exactly as in the antisym-

metrization operation AÄ | C & 5 | C & . If | C & is out of symmetry, it is projected

through destructive and constructive interference onto the subspace HAÄ of

the states satisfying AÄ . This can be seen as continuous partial reduction of

| C & . Thus relaxation time would be that of a population of network elements

relaxing independently of each other (first links, then gates). Since relaxation

of a N.E. follows a law of the type p (t) 5 1 2 e 2 r t, it can be seen that the

time t required to reach any desired probability q that all N.E. have relaxed

is polynomial in their number, or N. Measurement of the network qubits at

time t yields a solution with probability q (disregarding lucky chances). That

this is a solution is checkable off line in polynomial time. If, instead, the

network has no solutions, that can be decided after a number of repetitions

of the overall process of preparation and measurement, which, for a given

confidence level, grows polynomially with N.
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We shall now discuss the results obtained. Quantum annealing relies on

physical principles and it is not yet clear how to implement it. If implement-

able, there might be benefits. We believe it constitutes a potentially interesting
prospect. We conjecture that an evolution resulting from continuous reduction

of a relaxation process onto HAÄ does not comply with the mechanistic notion

of evolutions either determined from the past or partly freed from it by

reductionÐ i.e., randomness. Our evolution appears to be (in a kind of elusive

way) affected by the future, when it is prevented from undergoing an infinitesi-

mal reduction whose ª immediately futureº outcome would violate AÄ . AÄ would
work like an oracle in computer science, preventing the process from choosing

a path which would lead to a nonsolution. This would create faster than

classical computation. Such a conjecture can be investigated within the model

of reduction driven by both forward- and backward-in-time causality devel-

oped in Castagnoli (1995) and Castagnoli and Rasetti (1996).
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